
Application Note to the KLIPPEL R&D SYSTEM

The effective frequency range is a common characteristic of a loudspeaker and defined by the IEC standard 60268-5 paragraph 21.2 [1]. It describes the range of a requested linearity within the frequency response, where the sound pressure level is not more than 10 dB below an averaged maximum.

This Application Note is a step by step introduction for a fast calculation of the Effective Frequency Range with the appropriate Klippel Template.

CONTENTS:

Definition1	
Requirements	
Procedure	
More Information	

Γ

Requirements		
Start Up	To measure and calculate the Effective Frequency Range the following equipment is required:	
	 Install the RnD Analysis Software on your computer Create a new object and select the <i>IEC 21.2 Frequency Range</i> to start the analysis Enter the sensitivity of the microphone in property page <i>Input</i> for the <i>TRF Measure FUNDAMENTAL</i> or use a pistonphone to calibrate the microphone. 	

Procedure	
TRF Measurement	Motivation: We start with a simple sinusoidal sweep measurement to gain the Transfer Function of the Loudspeaker.
	How to do it: Adjust the measurement microphone normal to the driver as preferred and select the <i>TRF Measure FUNDAMENTAL</i> operation.
	In <i>Properties</i> \rightarrow <i>Stimulus</i> set F _{min} to a lower and F _{max} to a higher value than the boundary frequencies of the expected effective frequency range and modify the voltage if necessary.
	Run the measurement.
	Select the curve "Fundamental" from the window Fundamental + Harmonic distortion components and copy it to the clipboard.
Determination of the Effective Frequency Range	Motivation: The effective frequency range can easily be determined by the <i>CAL Frequency Range</i> operation, which will automatically find the octave band with the highest sensitivity but can also be modified if required.
	How to do it: Select SP in Properties \rightarrow Input of CAL Frequency Range and paste the Fundamental curve from Clipboard.
	If you want to use the standard calculation which determines the optimal averaging band (according to IEC standard [1]) select the automatic mode by entering the string <i>'auto'</i> in <i>mod</i> and there is no input required for <i>fmin</i> or <i>fmax</i> . Otherwise you may determine your averaging band as you like by defining the frequency bounds <i>fmin</i> and <i>fmax</i> and selecting the <i>'user'</i> mode.
Results	After running the script the <i>Result Variables</i> window will appear showing following result parameters. If an error occurred it will be displayed in the result variables window as well.
	The variables f_low and f_up return the lower and upper boarder of your frequency range according to the definition of IEC standard [1].
	In the second table you will find some additional data relevant variables within the calculation. mSPL is the mean sound pressure level weighted over logarithmic frequency scale within the boarders fmin and fmax which are ½ octave below and above the frequency with the maximum SPL in auto mode. The width is the bandwidth of this averaging band, which must be at least one octave to observe the IEC standard [1].

More Information

Standards	[1] IEC standard 60268-5 Sound System Equipment – Part 5 Loudspeakers, 21.2 Effective frequency range
	[2] IEC standard 60268-5 Sound System Equipment – Part 5 Loudspeakers, 20.6 Mean sound-pressure level in a stated frequency band
Application Note	AN34 – IEC 60268-5: Mean sound-pressure level in a stated frequency band

Klippel GmbH Mendelssohnallee 30 01309 Dresden, Germany updated April 4, 2012

www.klippel.de TEL: +49-351-251 35 35 info@klippel.de FAX: +49-351-251 34 31